Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Visible spectrum (645 nm) transverse electric field laser operation of InP quantum dots coupled to tensile strained In0.46Ga0.54P quantum wells

Identifieur interne : 00A809 ( Main/Repository ); précédent : 00A808; suivant : 00A810

Visible spectrum (645 nm) transverse electric field laser operation of InP quantum dots coupled to tensile strained In0.46Ga0.54P quantum wells

Auteurs : RBID : Pascal:04-0055890

Descripteurs français

English descriptors

Abstract

Data are presented that demonstrate the continuous wave room-temperature transverse-electric field (TE) visible-spectrum (645 nm) heterostructure laser operation of single-layer compressively strained 3.75 monolayer equivalent InP quantum dots (QDs) coupled to 60 Å wide tensile-strained In0.46Ga0.54P quantum wells (QWs). The simple stripe geometry (200 μm×4 μm) InP QD+InGaP QW heterostructure laser is capable of high performance despite the coupling of two competing recombination systems. The InP QD+InGaP QW laser exhibits low threshold (∼31 mA), high quantum efficiency (72%, ∼1.38 mW/mA), a relatively high characteristic temperature T0 of 69 K, and a shift in wavelength at temperature of 0.19 nm/°C. © 2004 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0055890

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Visible spectrum (645 nm) transverse electric field laser operation of InP quantum dots coupled to tensile strained In
<sub>0.46</sub>
Ga
<sub>0.54</sub>
P quantum wells</title>
<author>
<name sortKey="Walter, G" uniqKey="Walter G">G. Walter</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Electrical Engineering Research Laboratory and Center for Compound Semiconductor Microelectronics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Electrical Engineering Research Laboratory and Center for Compound Semiconductor Microelectronics, University of Illinois at Urbana-Champaign, Urbana</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Elkow, J" uniqKey="Elkow J">J. Elkow</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Electrical Engineering Research Laboratory and Center for Compound Semiconductor Microelectronics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Electrical Engineering Research Laboratory and Center for Compound Semiconductor Microelectronics, University of Illinois at Urbana-Champaign, Urbana</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Holonyak, N" uniqKey="Holonyak N">N. Holonyak</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Electrical Engineering Research Laboratory and Center for Compound Semiconductor Microelectronics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Electrical Engineering Research Laboratory and Center for Compound Semiconductor Microelectronics, University of Illinois at Urbana-Champaign, Urbana</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Heller, R D" uniqKey="Heller R">R. D. Heller</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78712-1100</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Microelectronics Research Center, The University of Texas at Austin, Austin</wicri:cityArea>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, X B" uniqKey="Zhang X">X. B. Zhang</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78712-1100</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Microelectronics Research Center, The University of Texas at Austin, Austin</wicri:cityArea>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dupuis, R D" uniqKey="Dupuis R">R. D. Dupuis</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78712-1100</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Microelectronics Research Center, The University of Texas at Austin, Austin</wicri:cityArea>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0055890</idno>
<date when="2004-02-02">2004-02-02</date>
<idno type="stanalyst">PASCAL 04-0055890 AIP</idno>
<idno type="RBID">Pascal:04-0055890</idno>
<idno type="wicri:Area/Main/Corpus">00C070</idno>
<idno type="wicri:Area/Main/Repository">00A809</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Compression strength</term>
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Monolayers</term>
<term>Quantum well lasers</term>
<term>Tensile strength</term>
<term>quantum dot lasers</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>4255P</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Résistance traction</term>
<term>Résistance compression</term>
<term>Couche monomoléculaire</term>
<term>Laser puits quantique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Data are presented that demonstrate the continuous wave room-temperature transverse-electric field (TE) visible-spectrum (645 nm) heterostructure laser operation of single-layer compressively strained 3.75 monolayer equivalent InP quantum dots (QDs) coupled to 60 Å wide tensile-strained In
<sub>0.46</sub>
Ga
<sub>0.54</sub>
P quantum wells (QWs). The simple stripe geometry (200 μm×4 μm) InP QD+InGaP QW heterostructure laser is capable of high performance despite the coupling of two competing recombination systems. The InP QD+InGaP QW laser exhibits low threshold (∼31 mA), high quantum efficiency (72%, ∼1.38 mW/mA), a relatively high characteristic temperature T
<sub>0</sub>
of 69 K, and a shift in wavelength at temperature of 0.19 nm/°C. © 2004 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>84</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Visible spectrum (645 nm) transverse electric field laser operation of InP quantum dots coupled to tensile strained In
<sub>0.46</sub>
Ga
<sub>0.54</sub>
P quantum wells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WALTER (G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ELKOW (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HOLONYAK (N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HELLER (R. D.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZHANG (X. B.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>DUPUIS (R. D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Electrical Engineering Research Laboratory and Center for Compound Semiconductor Microelectronics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78712-1100</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>666-668</s1>
</fA20>
<fA21>
<s1>2004-02-02</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2004 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>04-0055890</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Data are presented that demonstrate the continuous wave room-temperature transverse-electric field (TE) visible-spectrum (645 nm) heterostructure laser operation of single-layer compressively strained 3.75 monolayer equivalent InP quantum dots (QDs) coupled to 60 Å wide tensile-strained In
<sub>0.46</sub>
Ga
<sub>0.54</sub>
P quantum wells (QWs). The simple stripe geometry (200 μm×4 μm) InP QD+InGaP QW heterostructure laser is capable of high performance despite the coupling of two competing recombination systems. The InP QD+InGaP QW laser exhibits low threshold (∼31 mA), high quantum efficiency (72%, ∼1.38 mW/mA), a relatively high characteristic temperature T
<sub>0</sub>
of 69 K, and a shift in wavelength at temperature of 0.19 nm/°C. © 2004 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>4255P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>quantum dot lasers</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Résistance traction</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Tensile strength</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Résistance compression</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Compression strength</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Couche monomoléculaire</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Monolayers</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Laser puits quantique</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Quantum well lasers</s0>
</fC03>
<fN21>
<s1>033</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0404M000090</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00A809 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00A809 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:04-0055890
   |texte=   Visible spectrum (645 nm) transverse electric field laser operation of InP quantum dots coupled to tensile strained In0.46Ga0.54P quantum wells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024